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The Wigner–Seitz model for concentrated clay suspensions
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Lyon Cédex 07, France
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Abstract. The model of a single uniformly charged finite platelet confined with its counter-ions
and added salt to a Wigner–Seitz cell is treated within linearized Poisson–Boltzmann (or Debye–
Hückel) theory. We consider circular (disc-like) and square platelets placed at the centre of a
cylindrical or parallelepipedic cell of volume fixed by the macroscopic clay concentration. For a
given volume the free energyF is minimized with respect to the aspect ratio of the cell. We find
that the quadrupole momentQ of the total charge distribution always vanishes at the free-energy
minimum, and that for discs,Q andF are practically identical for the two cell geometries at any
given volume and salt concentration. Finally we propose a hybrid Poisson–Boltzmann/Debye–
Hückel formulation which allows non-linearities to be approximately accounted for.

1. Introduction

Clay colloid suspensions consist of thin crystalline silicate platelets carrying structural
surface charges, dispersed in water, in the presence of counter-ions and salt. The platelets
are typically 1 nm thick, irregularly shaped with lateral dimensions of a few tens or hundreds
of nm, and the surface charge density is typically an elementary charge(−e) per nm2 [1].
Although large natural clay platelets are somewhat flexible, smaller synthetic clay platelets,
like disc-shaped laponite [2], can be regarded as rigid.

A statistical description of concentrated dispersions, even of monodisperse and single-
shaped platelets, is very difficult, because of the considerable anisotropy of the interacting
double layers around each clay particle [3]. In two recent articles [4, 5], we considered
the problem of a single clay platelet confined to a Wigner–Seitz (WS) cell together with
co- and counter-ions, such that the total charge of the cell is zero. The shape of the WS
cell supposedly reflects the mean shape of the ‘cage’ formed by neighbouring platelets.
Although the concept of a WS cell is well defined only in the case of a regular lattice, it has
been widely used in the description of the local structure in liquids [6] and suspensions. For
spherical colloidal particles, the obvious shape of the WS cell is a concentric sphere [7], but
for anisotropic particles like rods [8] or platelets, the shape of the WS cell and that of the
particles match only when the latter are aligned. In reference [4], we considered a circular
platelet in a spherical WS cell appropriate for dilute suspensions where the platelets may
rotate freely, and in a co-axial cylindrical WS cell which is better adapted to concentrated
suspensions or swollen clays where particles are stacked in parallel arrays.

In this paper, we consider both disc-shaped and square platelets in parallelepipedic WS
cells. For any given concentration of platelets (which determines the volume of the WS
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cell) and of salt, the optimum aspect ratio of the cell is determined by minimizing the
free energy calculated within the linearized Poisson–Boltzmann approximation. We also
investigate the variation of the total quadrupole moment of the cell with the aspect ratio.
The results for disc-like platelets are compared to our earlier results for a cylindrical WS
cell. Finally, within the latter geometry, we introduce a hybrid Poisson–Boltzmann/Debye–
Hückel formulation, allowing an improvement over the fully linearized theory which is
known to be inadequate for highly charged platelets. This formulation can be regarded
as an extension of the classic Gouy–Chapman theory [11] for infinite charged planes to
finite-size platelets, which takes into account edge effects.

2. Poisson–Boltzmann theory in a Wigner–Seitz cell

Consider a single, infinitely thin clay plateletP, carryingZ elementary charges−e assumed
to be uniformly distributed over a surfaceS, placed at the centre of a WS cell of prescribed
topology and of volumeV = 1/n, wheren is the clay concentration (number of platelets
per unit volume). The platelet is suspended with its monovalent (positive) counter-ions in
a 1:1 salt solution; the solvent (water) is assumed to be a continuum of dielectric constant
ε. Depending on the situation under scrutiny, various boundary conditions can be applied
on the surface6 of the WS cell corresponding to various local environments of the clay
platelet [4]. We will consider the cases where the WS cell is associated with a crystalline
array of clay particles or where the average topology of the cage formed by neighbouring
platelets can be approximated in such a way. The normal component of the electric field
therefore vanishes everywhere on the surface6. In the following, we shall address the
cases of disc-shaped platelets in cylindrical or parallelepipedic cells (section 3), and of
square platelets in parallelepipedic cells (section 4).

In Poisson–Boltzmann (PB) theory, the micro-ions are considered as an inhomogeneous
ideal gas: the local densities of co- and counter-ions are then related to the electrostatic
potentialϕ(r) by

ρ±(r) = ρ±0 exp[∓βeϕ(r)] (1)

whereβ = 1/(kT ).
The Debye–Ḧuckel (or linearized Poisson–Boltzmann) approximation consists in

linearizing the relation between the densities andϕ aroundϕ(r) = ϕ?. This can be done by
specifyingr0 whereϕ? = ϕ(r0). Alternatively, a simple choice consists in takingϕ? = ϕ
whereϕ is the mean potential in the WS cell [5]. The prefactorsρ±0 are then determined
by

ρ±0 = n± ≡
N±
V
≡ 1

V

∫
V

ρ±(r) d3r (2)

whereN+ (N−) is the number of counter-ions (co-ions) in the WS cell of volumeV .
Note thatns = n− is the salt concentration and that the electroneutrality constraint reads
N+ −N− = Z.

In the situations considered here, the boundary conditions involve the electric field, so
it is possible to imposeϕ = 0. The approximate densities are then

ρ±(r) = ρ±0 [1∓ βeϕ(r)] (3)

and denoting the charge density of the platelet byqP , the electrostatic potential is determined
by Poisson’s equation:

∇2ϕ(r) = −4π

ε
qP(r)+ κ2

D

[
ϕ(r)− γ0

]
(4)
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where

γ0 = kT

e

ρ+0 − ρ−0
ρ+0 + ρ−0

and κ2
D = 4π

βe2

ε
(ρ+0 + ρ−0 ) = 1/λ2

D. (5)

κ2
D is the squared inverse Debye length. The strength of electrostatic interactions is

characterized by the Bjerrum length`B = βe2/ε.
In the canonical situation, the concentrationsn± are knowna priori, whereas in the case

where the system is in equilibrium with a salt reservoir of concentrationn′s , the condition
of equal salt chemical potentials in the solution and in the reservoir yieldsρ+0 ρ

−
0 = (n′s)2.

As a consequence,ns is given by (the Donnan effect)

ns =
√
(n′s)2+

Z2

4
n2− Z

2
n. (6)

The clay concentrationn in the solution fixes the average volume of the WS cell. For
a given shape (cylinder or parallelepiped), the free energyF of the double layer must be
minimized with respect to the aspect ratio equal to the height over the radius or edge length of
the base, the volume of the cell being kept constant. If the system is in osmotic equilibrium
with a salt reservoir, the difference between the grand potential� to be minimized andF
is independent of the aspect ratio of the cell, since

�− F = −µsaltNsalt= −NsaltkT log(n′s3
3)

and so the potential to be minimized is stillF . In the following examples,F has been
calculated analytically using a constant-Debye-length charging process from a situation
where the platelets are neutral (Z = 0) to that whereZ = Zfinal [5]. For uncharged
platelets,N0

+ = N0
− = N0 = V ns + Z/2. At any stage of the process,N± = N0 ± Z/2,

and in the elementary stepZ→ Z + δZ
δF =

∫
P
ϕ δσ d2r + kT [log(ρ+0 3

3)
]
δN+ + kT

[
log(ρ−0 3

3)
]
δN− (7)

whereσ denotes the surface charge of the platelet (σ = −Ze/S < 0). The integration
along this path gives

F − F(Z = 0) = A− Zeγ0+N0kT log

{
(N0)2− Z2/4

(N0)2

}
+ Z

2
kT log

{
N0+ Z/2
N0− Z/2

}
(8)

where

A =
∫ σ

0

[∫
P
(ϕσ

′
P − γ0) d2r

]
dσ ′. (9)

3. Disc-shaped platelets

3.1. The cylindrical Wigner–Seitz cell

When the WS cell is a cylinder of heightH = 2h and radiusR, the potential can be
expanded in a Bessel–Dini series [9] which is well adapted to the condition of a vanishing
normal electric field on the surface6 [4]. The radius of the platelet is denoted byr0. Using
cylindrical coordinates(r, z), the solution of equation (4) reads [4]

βeϕ(r, z) = βeγ0+ 1

κDb

(
r0

R

)2 cosh[κD(h− |z|)]
sinh(κDh)

+ 2

b

r0

R

∞∑
n=2

3nJ1(knr0)

yn sinh(h/3n)J
2
0 (yn)

cosh

(
h− |z|
3n

)
J0(knr) (10)
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where yn is the nth root of J1(y) = −dJ0(y)/dy = 0, J0 and J1 are the Bessel
functions of zeroth and first order (y1 = 0), 3n = R/

√
(y2
n + κ2

DR
2), kn = yn/R, and

b = e/(2π`Bσ) < 0 is the Gouy length.
The first non-vanishing multipole of the charge distribution is the quadrupoleQ =

Qzz = −2Qxx = −2Qyy with the (Oz) axis orthogonal to the disc:

Qtot
zz =

∫
V

{
qP(r)+ e

[
ρ+(r)− ρ−(r)]} (2z2− x2− y2) d3r. (11)

For an oblate distribution of negatively charged ions,Qzz > 0 (e.g.Qdisc
zz = Zer2

0/4). From
expression (10) for the potential

Qtot
zz

Qdisc
= 1− 8

κ2
Dr

2
0 sinh(κDh)

[
κDh+

(
R2κ2

D

8
− 1

)
sinh(κDh)

]
− 16R3κ2

D

r3
0

∞∑
n=2

32
nJ1(knr0)

y3
nJ0(yn)

. (12)

The free energy can also be calculated, leading to the following expression forA (cf.
equation (8)):

β

Z
A = 1

2κDb

{(
r0

R

)2 1

tanh(κDh)
+ 4

∞∑
n=2

κD3nJ
2
1 (knr0)

y2
nJ

2
0 (yn)tanh(h/3n)

}
. (13)
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Figure 1. The aspect ratio dependence of the total normalized quadrupole for a clay
concentrationn = 5× 10−5 M. The platelets carryZ = 100 elementary charges,εC.G.S. = 78
andT = 300 K.

Figure 1 shows the aspect ratio dependence of the quadrupolar moment for different
salinitiesns . For a given clay concentrationn, only the product 2πR2h = 1/n is fixed.
The aspect ratioh/R (or equivalentlyh/r0) is determined by minimizing the free energy
as shown in figure 2. The value obtained satisfies the physical requirementR > r0.



The Wigner–Seitz model for concentrated clay suspensions 2687

0.0 2.0 4.0 6.0 8.0 10.0
h / ro

-4.0

-2.0

0.0

2.0

Q
to

t /
Q

di
sc

2.0

3.0

4.0

βA
/Z

Cylindrical WS Cell

Figure 2. The free energy as a function of the aspect ratioh/r0, for a constant-volume
cell. Here,n = 10−5 M, ns = 10−3 M and Z = 100. The free energy is a minimum for
2.048 < h/r0 < 2.055. For this equilibrium value of the aspect ratio, the total quadrupole
vanishes:Qtot = 0 betweenh/r0 = 2.024 and 2.027.

A noteworthy feature of this system is that for this ‘optimal’ aspect ratio, the ionic
distribution aroundP corresponds to a vanishing total quadrupole moment (cf. figure 2).
Within numerical errors, this coincidence has been observed for all concentrations(n, ns)

investigated. A plausible explanation is proposed in the concluding section.

3.2. The hybrid Poisson–Boltzmann/Debye–H¨uckel theory

In a Bessel–Dini expansion

ϕ(r, z) =
∞∑
n=1

An(z)J0

(
yn
r

R

)
(14)

the termn = 1 (y1 = 0) corresponds to the average potentialϕz on z = constant planes, as
may be concluded from the relation∫ R

0
rJ0

(
yn
r

R

)
dr = R2

yn
J1(yn) = 0. (15)

Notice also that the termn = 1 in expansion (10) corresponds to the solution of equation
(4) in the case of an infinite plane in a WS slab of height 2h, with an effective surface
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chargeσ ′ = σr2
0/R

2:

ϕ(r, z) = γ0+ 2kT

eκDb

cosh[κD(h− |z|)]
sinh(κDh)

. (16)

The Gouy lengthb is associated with the effective chargeσ ′, i.e.: b = e/(π`Bσ
′). The

summationn > 2 can therefore be considered as a finite-size correction to ther0→∞ limit
of the fully linearized Poisson–Boltzmann theory. We may expect to obtain an estimate of
this r-dependent correction to the non-linear one-dimensional Gouy–Chapman theory by
keeping the non-linear termn = 1 in the density profiles and by linearizing the potential
aroundϕz = A1(z):

ρ±(r) = ρ±0 exp[∓βeA1(z)]

{
1∓ βe

∞∑
n=2

An(z)J0

(
yn
r

R

)}
. (17)

As a consequence,

n± = ρ±0
1

2h

∫ h

−h
exp[∓βeA1(z)] dz (18)

and it isa priori impossible to imposeρ+0 = n+ andρ−0 = n− simultaneously.
For z 6= 0, the semi-linearized PB equation reads

∇2ϕ(r) = −4πe

ε

[
ρ+0 exp(−βeA1)− ρ−0 exp(βeA1)

]
+ 4π`B

[
ρ+0 exp(−βeA1)+ ρ−0 exp(βeA1)

] { ∞∑
n=2

An(z)J0

(
yn
r

R

)}
. (19)

The boundary condition associated with the presence of the uniformly charged platelet
located atz = 0, r < r0 is

dϕ

dz

∣∣∣∣
z=0+
= −2πσ

ε
2(r0− r) (20)

where2 is the Heaviside function. On top of the cylinder (z = ±h), the electric field
vanishes, i.e. dϕ/dz = 0.

Projection on the basis functionsJ0 leads to the differential equations

d2A1(z)

dz2
= −4πe

ε

[
ρ+0 exp(−βeA1)− ρ−0 exp(βeA1)

]
(21a)

d2An(z)

dz2
−
(
yn

R

)2

An(z) = 4π`B
[
ρ+0 exp(−βeA1)

+ ρ−0 exp(βeA1)
]
An(z) n > 2. (21b)

The Heaviside step function can be expanded in a Bessel–Dini series:

2(r0− r) =
(
r0

R

)2

+ 2r0
R

∞∑
n=2

1

ynJ
2
0 (yn)

J1

(
ynr0

R

)
J0

(
ynr

R

)
(22)

so the boundary condition forz→ 0 translates into

dA1(z)

dz
= −2πσ

ε

(
r0

R

)2

(23a)

dAn(z)

dz
= −4πσr0

εR

1

ynJ
2
0 (yn)

J1

(
ynr0

R

)
n > 2 (23b)
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and
dAn(z)

dz

∣∣∣∣
z=±h
= 0 n > 1. (24)

As expected, the termA1(z) is the solution of the corresponding one-dimensional
non-linear Gouy–Chapman problem (the infinite disc), with an effective surface charge
σ ′ = σr2

0/R
2. Once this solution is known, it must be injected into equations (21b) which

are linear in theAn; the resulting equations generally turn out to be analytically intractable
and require a numerical integration. In the appendix, we will present the simplest example,
for which a fully analytical solution can be obtained.

3.3. Parallelepipedic Wigner–Seitz cells

If the WS cell is a parallelepiped of dimensionsL× L×H in the x-, y- andz-directions
respectively, the potential can be expanded in plane waves compatible with the periodic
boundary conditions. These are equivalent to the condition of a vanishing normal component
of the electric field on6:

ϕ(r) =
∑
k

ϕ̃(k) exp{ik · r} (25)

with

k = 2π

 nx/L

ny/L

nz/H

(nx, ny, nz) ∈ Z3. (26)

In terms of Fourier components, equation (4) becomes

(k2+ κ2
D)(ϕ̃(k)− γ0) = 4π

ε
q̃P(k) (27)

where

q̃P(k) = 1

V

∫
V

qP(r) exp{ik · r} d3r. (28)

A little algebra yields

q̃P(k) = 2πr0
k‖

σ

V
J1(k‖r0) with k‖ = 2π

L

√
n2
x + n2

y. (29)

Hence, the expression of the electrostatic potential is

βeϕ(r) = βeγ0+ 4π

b

r0

L2H

∑
(nx ,ny ,nz)∈Z3

J1(k‖r0)
k‖(k2+ κ2

D)
cos(k · r). (30)

For the corresponding quadrupolar moment, one finds

Qtot
zz

Qdisc
= −16

r3
0

{ ∞∑
nz=1

(−1)nz

k2
z + κ2

D

r0−
∞∑
nx=1

J1(kxr0)

k2
x + κ2

D

(−1)nx
2

kx

}
(31)

and the same procedure as above yields the free energy:

β

Z
A = − 4π

L2Hb

∑
(nx ,ny ,nz)∈Z3

J 2
1 (k‖r0)

k2
‖(k2+ κ2

D)
. (32)

It is instructive to estimate the changes inF and Q induced by the change of the
topology of the WS cell, compared to the cylindrical case. Figure 3 shows that in spite
of the completely different analytical expressions (12)/(31) and (13)/(32), the numerical
evaluations yield extremely close results for the given concentrations and aspect ratios. In
particular, the minimum of the free energy still coincides with the vanishing ofQtot

zz .
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Figure 3. A comparison between the cylindrical and parallelepipedic geometries (ns = 10−3 M,
n = 10−5 M, Z = 100; see figure 2). The whole range of aspect ratios displayed satisfies the
physical requirementr0 < R (cylindrical geometry) orr0 < L/2 (parallelepipedic cell). For
these parameters, a cubic cell (H = L) corresponds toH/(2r0) ' 2.2.

4. Square platelets

The problem of a square platelet of edge lengthl0 placed at the centre of a parallelepipedic
cell is very similar to the case studied in section 3.3. The potential is once more expanded
in plane waves, leading to the form

βeϕ(r) = βeγ0+ 8

bL2H

∑
(nx ,ny ,nz)∈Z3

sin(kxl0/2) sin(kyl0/2)
1

kxky

1

k2+ κ2
D

cos(k · r). (33)

The corresponding expression of the total quadrupole is

Qtot
zz

Qplatelet
= −48

l30

{ ∞∑
nz=1

(−1)nz
l0

k2
z + κ2

D

− 2
∞∑
nx=1

(−1)nx
sin(kxl0/2)

kx(k2
x + κ2

D)

}
(34)

while for the free energy

β

Z
A = − 16

l20L
2Hb

∑
(nx ,ny ,nz)∈Z3

sin2(kxl0/2) sin2(kyl0/2)

k2
xk

2
y(k

2+ κ2
D)

. (35)

5. Discussion

The main findings of the present work may be summarized as follows.
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(a) Over a broad range of physical conditions, the free energy of the distribution of
co- and counter-ions within a WS cell goes through a minimum at a physical value of
the aspect ratio. This indicates that within the mean-field-like WS description, a particular
spacing between platelets in a parallel stacking is selected, under the action of electrostatic
forces alone. Obviously the WS picture restricts the possible topologies to columnar
stackings, and much more complicated structures should be expected, particularly at low
clay concentrations.

(b) In the case of disc-like platelets, the free energy and the quadrupole moment of the
charge distribution in the WS cell are practically identical for cylindrical and parallelepipedic
cells of equal volume. It seems reasonable to expect that a regular columnar stacking of
circular platelets would be of hexagonal symmetry, with a unit cell which is somewhat
intermediate in shape between cylindrical and parallelepipedic cells.

(c) For any given clay and salt concentrations, the quadrupole moment of the cell is found
to vanish at the aspect ratio which minimizes the free energy. This somewhat surprising
finding may be rationalized in the light of the perfect screening properties of Coulombic
systems (see e.g. [12]). It can be proven rigorously under rather weak clustering assumptions
that the multipole moments of a distribution of charges vanish in states of thermodynamic
equilibrium. Hence we expect the total quadrupole moment of a macroscopic suspension
of clay platelets to be zero. This property should hold, in particular, if the equilibrium state
is a regular columnar stacking of platelets. The quadrupole moment of the unit cell of such
a regular array must then also vanish. It may next be argued that, as long as the shape
of the WS cells considered in this paper is close to that of the unit cell (expected to be
of hexagonal symmetry) of the regular array, the quadrupole moment of the cylindrical or
parallelepipedic cells should be close to zero.

(d) We propose a preliminary formulation of a hybrid Poisson–Boltzmann/Debye–
Hückel theory to avoid, at least partially, the shortcomings of the linearization of the
Boltzmann factors, which becomes very dubious for highly charged platelets. A numerical
implementation of this scheme, which correctly incorporates the Gouy–Chapman limit for
infinite platelets, will be the subject of a future publication.

Appendix

Let us consider the case of a disc placed at the centre of an infinite cylinder (h →
∞, R finite) without added salt. For this suspension of vanishing clay concentration,
the electrostatic potential satisfies, within the hybrid Poisson–Boltzmann/Debye–Hückel
formulation presented in section 3.2,

d2A1(z)

dz2
= −4πe

ε
ρ+0 exp(−βeA1) (A1a)

d2An(z)

dz2
−
(
yn

R

)2

An(z) = 4π`Bρ
+
0 exp(−βeA1)An(z) n > 2. (A1b)

For z →∞, the only physical requirement isρ+(r, z)→ 0. The Gouy–Chapman solution
for n = 1 is well known [11]:

A1(z) = 2kT

e
log(|z| − b)+ A0

1 b = e

π`Bσ ′
< 0 (A2)

where−b is the effective Gouy length characterizing the thickness of the double layer for
an infinite platelet. Here, the electroneutrality constraint relates the unphysical quantities
A0

1 andρ+0 throughρ+0 exp(−βeA0
1) = 1/(2π`B).
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For z > 0, the higher-order terms (n > 2) in the expansion (14) therefore obey the
differential equation

d2An(z)

dz2
−
(
yn

R

)2

An(z) = 2

(z − b)2An(z). (A3)

According to equation (17), the conditionρ+ → 0 for z→∞ imposesAn(z)/z2→ 0. Let
us transform (A3) into a canonical form by defining

Bn(v) = 4y2
n

R2
An(z) with v = 2yn

R
(z − b). (A4)

We obtain

d2Bn

dv2
−
(

1

4
+ 2

v2

)
Bn = 0 (A5)

the solutions of which are Whittaker functions (see for example reference [10], ch XVI):

Bn(v) = αnW0,3/2(v)+ βnW0,3/2(−v). (A6)

From the asymptotic large-v expansionW0,3/2(v) ∼ exp(−v/2), it follows that βn = 0.
Finally, using the notationW ′ = dW/dv, the boundary condition forz = 0+ translates into

αn = − 1

W ′0,3/2(v = −2ynb/R)

8πσr0
εR2

1

J 2
0 (yn)

J1

(
ynr0

R

)
(A7)

and the potential takes the form

ϕ(r, z) = A0
1+

2kT

e
log(|z| − b)+

∞∑
n=2

R2

4y2
n

αnW0,3/2

{
2yn
R
(|z| − b)

}
J0

(
ynr

R

)
. (A8)

The corresponding counter-ion profile is

ρ+(r) = 1

2π`B

1

(|z| − b)2
{

1− βeR
2

4

∞∑
n=2

1

y2
n

αnW0,3/2

[
2yn
R
(|z| − b)

]
J0

(
ynr

R

)}
. (A9)
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